FROZEN CUSTARD SYSTEM MANAGEMENT

Using customized DBMS

Team 3 - Session 9:50 AM

The Original Frozen Custard— DBMS Course Project

Hummarah Shahzad Avishek Dasgupta Samarth Bansal Siddhant Treasure Mannat Singh

Kai

Project Map

Original Frozen Custard— DBMS Course Project

Business Problem - defining business objectives for the project

Conceptual Design — developing ER diagram for the problem

Logical Design — developing relational schema from ERD

Normalization — ensuring logical design is in 4NF before SQL modeling

Implementing Database - creating database in SQL

Querying Database — developing queries to meet our business objectives

Business Insights — Business findings and way forward

Entities & Relationships

Business Problem

Our project aims to model a centralized data base for a local business using multiple sources of
data to help management generate relevant insights for data driven business decisions

L ® ©@ @ (& @

Expense-

Employees— Sales - Raw material - Manufacturing
Employees are Products generate sales for Each product is made using selling and
responsible for the business different raw materials marketing
Ili duct
selling products Products— Marketing— Vendors - expense alpng
Products are offered Raw materials are with running
Each channel has a : . expenses are
by the marketing expense provided by various Jed
business/employees vendors recorde
to the customers
Objectives
o o o 'dentify star selling products to Employees Annual bonus L\Aqltlple sorting ptarameters
Z@R cnsure right marketing strategy in with respect to yearly o O Improve /mventory

place performance matrix management

DESIGNING DBMS

.
Conceptual Design

Developing entity relationship diagram

for the problem
Relationship between Employees> fr D o
Product > Sales> Raw material & o Nl s
Vendor & Expenses is a many-to-many]
relationship, we create three associative
entity tables:

b

Is
Supplied Vendor
by

Products

7y

Material 1D

Sale ID

o
()
Generate
‘endor.
Employee ID =
Product ID N Product ID Xpens

)

)

Sells

~1¢ Employee-Product (Sells) - |

Employee annual bonus Cards

Expenses

@ Employee \ Sales ___
ﬂ Product-Sales (Generate)- @ ™
/. |dentify highest selling products

Emp_Lastname

reservenl Product-Raw Material (Use)— Shkaiing

a5 To optimize inventory level to meet
product demand (g D) (Pt

Logical Design
Developing relational schema from ER
diagram

W

Table 1 Products (Product 1D, SKU 1D, Product_Name, Product_Type, Selling_Price)
— Sells (Product ID, SKU ID, Employee D)
Table 3 Employee (Employee ID, Designation, Hourly_rate, Emp_lastname, Emp_firstname)
Table 4 Sales (Sale ID, Sales_Date, Gross, Sales_Tax, Gift_Cards,Bulk, Deposit,Credit_Card, VIP_Card)
Table 5 Generate (Sale_ID, Product ID, SKU ID)
Table 6 Raw_material (Material 1D, Material_Name, Price, Unit)
.
|
Table 7 Use (Material 1D, SKU ID, Product ID)
Table 8 Vendor (Vendor ID, Vendor_Name,_Material_ID)
& T stesls
il
Table 9 Expenses @p{ e ID, Expense_Name, Expense_2022, Expense_2021, Expense_2020, Expense_2019, Expense_2018,
Expense_2017, Expense_2016, Quantity_2022, Quantity_2021, Quantity_2020, Quantity_2019, Quantity_2018, Quantity_2017,
Quantity_2016) ,
|
Table 10 Vendor-Expense (Expense ID, Vendor ID)
Table 11 Marketing (Marketing_ID, Marketing_Type, Expense_ID)

Relational Schema

Table 1 Products (Product ID, Product_Name, Type)
&«
Table 2 Price (Proddct ID, SKU ID, Selling_Price)
.......... T A
Tabke3 || e rpas 0 500 10 Emaoes 10
Table 4 Employee (Employee ID, Designation, Hourly_rate, Emp_lastname, Emp_firstname)
Table 5 Sales (Sale ID, Sales_Date, Gross, Sales_Tax, Gift_Cards,Bulk, Deposit,Credit_Card, VIP_Card)
Table 6 Generate (Sale_ID, Product 1D, SKU ID)
Table 7 Raw_material (Material 1D, Material_Name, Price, Unit)
«
|
Table 8 Use (Material ID, SKU ID, Product D)
Table 9 Vendor (Vendor 1D, Vendor_Name,_Material_ID)
7 e P A AT
L
Table 10 Expenses (gp_r‘ge ID, Expense_Name, Expense_2022, Expense_2021, Expense_2020, Expense_2019, Expense_2018,
Expense_2017, Expense_2016, Quantity_2022, Quantity_2021, Quantity_2020, Quantity_2019, Quantity_2018, Quantity_2017,
Quantity_2016) ,
|
Table 11 Vendor-Expense (Expense ID, Vendor ID)
Table 12 Marketing (Marketing_ID, Marketing_Type, Expense_ID)

Relational schema allows us to set the framework for implementation of our DBMS

Entities in 3 NF

Normalization

Entities needs to be in 3NF before
implementation

Validation for 1NF
Multi-valued or composite attributes?
* No multi-valued or composite attributes.

Original Table in the Relational Schema:

Validation for 2NF Table1 | Products (Product ID, SKU ID, Product_Name, Product_Type, Selling Price)
Partial dependencies in the data?.

e It was found that Table 1 in the Relational Schema 3 _
has partial dependencies. Therefore, Table 1 was split [~ Medified Tables after conversion to 2 NF:
into 2 tables to remove the partial dependencies. Table1 | Products (Product ID, Product Name, Type)

Table 2 Price (Procé:t ID, SKU_ID, Selling Price)

Validation for 3 NF: -

Transitive Dependencies?

« After modifying the Schema for 2 NF, the data
available in all the tables were validated for 3NF. It
was observed that the data is already in 3 NF, since
no transitive dependencies were observed.

IMPLEMENTING DBMS IN SQL

Implementation
Creating database in SQL

O 00 N O 0 b W N -

0 N O AW

A H N

I Using CREATE to generate entity tables

CREATE TABLE " product” (
"Product_ID" int NOT NULL,
"Product_name’ text,
" Product_type” text,
PRIMARY KEY (" Product_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

CREATE TABLE "price’ (

*SKU_ID" int NOT NULL,

"Product_ID" int NOT NULL,

"SKU_Name" text,

"Price’ double DEFAULT NULL,

PRIMARY KEY (" SKU_ID"," Product_ID"),

KEY "Product_ID_idx" (" Product_ID"),

CONSTRAINT "Product_ID" FOREIGN KEY (" Product_ID") REFERENCES "product’ (" Product_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

CREATE TABLE "employees” (
*EMPLOYEE_ID" int NOT NULL,
"EMPLOYEE_FIRSTNAME" text,
"EMPLOYEE_LASTNAME" text,
"DESIGNATION" text,
"HOURLY_RATE" double DEFAULT NULL,
PRIMARY KEY (" EMPLOYEE_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

— o e e e e e M e —— —— —— —— —— = u e e e e e e e e e

A N s WN -

Using CREATE to generate associative entity tables

— CREATE TABLE "sells” (

"SKU_ID" int NOT NULL,
"Product_ID" int NOT NULL,
"Employee_id" int NOT NULL,
PRIMARY KEY ("SKU_ID", Product_ID", Employee_id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Implementation
Creating database in SQL

I Using CREATE to generate entity tables Using CREATE to generate associative entity tables

|
|
|
1 CREATE TABLE " product” (:
2 "Product_ID" int NOT NULL, |
3 "Product_name’ text, I
4 *Product_type" text, :
5 PRIMARY KEY (" Product_ID") 1
6) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci !
|
|
1 1 CREATE TABLE 'generate” (
1 2 "PRODUCT_ID" int NOT NULL,
: 3 "SKU_ID" int NOT NULL,
1 CREATE TABLE "sales” (1 4 "SALE_ID" int NOT NULL,
2 ‘Sale_ID" int NOT NULL, : 5 PRIMARY KEY (" PRODUCT_ID',"SKU_ID',"SALE_ID")
3 Sale_Date” text, | 6) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
4 "GROSS' double DEFAULT NULL, 1
5 "VIP_Cards’ text, :
6 ‘Credit_Card’ text, 1
7 "DEPOSIT" text, 1
|
2 "BULK' text, |
9 "Sales_Tax' double DEFAULT NULL, 1
10 'Gift_Cards’ text, :
11 PRIMARY KEY (" Sale_ID") I
12) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci I
|
|
|
|
|
|
|

Implementation
Creating database in SQL

I Using CREATE to generate entity tables Using CREATE to generate associative entity tables

CREATE TABLE " product” (
"Product_ID" int NOT NULL,
"Product_name’ text,
" Product_type” text,
PRIMARY KEY (" Product_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

D h W

CREATE TABLE "uses’ (
*Material_ID" int DEFAULT NULL,
*Product_ID" int DEFAULT NULL,
"SKU_ID" int DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

0 s W N -

CREATE TABLE "raw_material” (
"MATERIAL_ID" int NOT NULL,
"MATERIAL_NAME" text,
"PRICE" double DEFAULT NULL,
“UNIT' text,
PRIMARY KEY (" MATERIAL_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

N O s W

Implementation
Creating database in SQL

I Using CREATE to generate entity tables

1 & CREATE TABLE "vendor (

2 "VENDOR_ID" int NOT NULL,

3 *VENDOR_NAME" text,

4 "MATERIAL_ID" int NOT NULL,

5 PRIMARY KEY ('VENDOR_ID"," MATERIAL_ID"),

6 KEY *MATERIAL_ID_idx" (' MATERIAL_ID"),

7 CONSTRAINT 'MATERIAL_ID" FOREIGN KEY (' MATERIAL_ID") REFERENCES ‘raw_material’ (*MATERIAL_ID")
8) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

1 -} CREATE TABLE "expenses’ (

2 "EXPENSE_ID" int NOT NULL,

3 "EXPENSE_NAME" text,

= "EXPENSE_2022" double DEFAULT NULL,
5 "QUANTITY_2022" int DEFAULT NULL,

6 "EXPENSE_2021" double DEFAULT NULL,
g "QUANTITY_2021" int DEFAULT NULL,

8 "EXPENSE_2020" double DEFAULT NULL,
S "QUANTITY_2020" int DEFAULT NULL,

10 EXPENSE_2019" double DEFAULT NULL,
11 *QUANTITY_2019" int DEFAULT NULL,
12 *EXPENSE_2018" double DEFAULT NULL,
13 *QUANTITY_2018" int DEFAULT NULL,
14 *EXPENSE_2017" double DEFAULT NULL,
15 "QUANTITY_2017" int DEFAULT NULL,
16 *EXPENSE_2016" double DEFAULT NULL,
17 *QUANTITY_2016" int DEFAULT NULL,
18 - PRIMARY KEY (" EXPENSE_ID")

19) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

— o e e e e M e e Mmm M e M M M e M R A o o o . . o — — —— —— —— dm

N oH W N -

Using CREATE to generate associative entity tables

=) CREATE TABLE "vendor_expense” (
"EXPENSE_ID" int NOT NULL,
"WENDOR_ID" int NOT NULL,
PRIMARY KEY (" EXPENSE_ID'," VENDOR_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

) CREATE TABLE "marketing" (

"MARKETING_ID" int NOT NULL,

"MARKETING_TYPE" text,

"EXPENSE_ID" int DEFAULT NULL,

PRIMARY KEY (" MARKETING_ID'),

KEY "EXPENSE_ID_idx" (*EXPENSE_ID"),

CONSTRAINT "EXPENSE_ID" FOREIGN KEY (' EXPENSE_ID") REFERENCES expenses’ ("EXPENSE_ID")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Implementation

Relational instance in database

Using SELECT to view corresponding tables

e EXPENSE_ID EXPENSE_NAME EXPENSE_2022 QUANTITY_2022 EXPENSE_2021 QUANTITY_2021 EXPENSE_2020 QUANTITY_2020 EXPENSE_2019 QUANTITY_2
10 SELECT * FROM project.employees; » |1 Accounting 4273.27 2 218,79 12 3758.84 19 3540.1 1
2 Advertising 14906.97 9 11665.39 6 7060.89 3 16104.72 7
" M SELECT * FROM project.expenses; 3 Marketing 5139.95 6 271 18 499458 8 5910.47 5
: . 4 BankCharges 124.86 5 165.11 2 134.2 13 164.23 19
- SELECT * FROM project.generate; 5 CreditCardFees 15270.94 7 19247.12 15 15420.11 5 14434.91 14
ae SELECT * FROM project.marketing; 6 Depreciation 1551.34 4 36284.92 8 60526.81 10 4667.06 2
7 EmployeeRelations-ColtShirts ~ 2155.28 8 788.19 20 0 17 50,02 8
. SELECT * FROM project.price; 8 Uniforms 123.53 1 1343.71 9 1112.95 2 763.37 15
- - L . 9 EquipmentRental EASE %7.9 7 683.2 3 449,36 14 369.13 1
6 SELECT * FROM project.product; Freight-FuelSurcharge 368,06 4 300.04 17 %89.2 6 5101)
7 ® SELECT * FROM project.raw_material; - S it S Lid i TS i e E
avnancae 1 v A mnh
8 ® SELECT * FROM project.sales;
PRODUCT_ID SKU_ID SALE_ID MARKETING_ID MARKETING_TYPE EXPENSE_ID
> |1 5 134 » |1 Sodal Media Marketing - FB 3
1 7 643 2 Sodal Media Marketing - Instagram 3
1 8 654 3 Sodal Media Marketing - Website 3
1 10 866 4 Sodal Media Marketing - X 3
1 14 317 5 Sodal Media Marketing - Youtube 3
2 763 6 Outdoor Advertising 2
2 513 7 Radio Advertisements 2
2 10 128 8 Community Events 3
2 11 463 9 Newspapers 3
2 13 328 10 Online Advertising 2
2 13 368 11 Local TV Advertisements 2

Query Obijective: show the total sales for
year from 2017 to 2020

Querying the DBMS

Business inferences from our database

ouput

#Total sales every year

| year Total Sales

P 2020 492276.1400000002
2019 4597374.07000000007
2018 512358.6599999998
2017 551388.94

30 select SUBSTRING(sale date, 7, 4) as year , sun(credit card) + sun(deposit) as Total Sales
4 from project.sales

group by SUBSTRING(sale_date, 7, 4) order by 1 desc;

"_EE"EQ_] Business Implications

The above output can act as a reference data to evaluate year on year total sales for the business and identify the
year in which sales was the highest, this information can be further used to find out the contributors of high sales in
the respective year

Query Obijective: show the total expense
for all years from 2017 to 2020.

Querying the DBMS

Business inferences from our database

ouput

#Total Expenses every year

year Total_expense

select '2018' as year, sum(expense_2018) as Total expense from project.expenses |

2020 ©608916.7699999998
zziz;t '2017' as year, sum(expense_2017) as Total_expense from project.expenses 2019 495136.78

Z:Z:t '2019' as year, sum(expense_2819) as Total_expense from project.expenses 2018 503128.6

select '2020' as year, sum(expense_2020) as Total_expense from project.expenses : 2017 567319.48

order by 1 desc;

"_EE"EQ_] Business Implications

This query helps us extract the total expense on an annual basis, we can further use the total output to select a year
where we want to dig deeper into the expense table and understand where we can cut down on them

Query Obijective: show the profit or loss of
each year from 2017 to 2020.

Querying the DBMS

Business inferences from our database

13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#Profit or Loss for all years

with sales as (select SUBSTRING(sale_date, 7, 4) as year , sum(credit_card) + sum(deposit) as Total_Sales

order by 1 desc)

select a.year,a.total_sales, b.total_expense, a.total_sales - b.total_expense as Profit_Loss

I
I
1
I v
from project.sales : year total_sales total_expense Profit_Loss
group by SUBSTRING(sale_date, 7, 4) order by 1 desc), 1 [1
1 (2020 492276,1400000002 608916.7699999998 -116640.6299999996
I
SR | 2019 497374.07000000007 485136.78 2237,2800000000373
select '2018' as year, sum(expense_2018) as Total_expense from project.expenses I
union | 018 512358.6599999998 503128.6 9230.059999999823
se}ect '2017' as year, sum(expense_2017) as Total_expense from project.expenses : 2017 551388.94 567319.48 _15930'540000000037
select '2019' as year, sum(expense_2019) as Total_expense from project.expenses :
union 1
select '2020' as year, sum(expense_2020) as Total_expense from project.expenses :
|
I
1

from sales a join expense b on a.year = b.year;

“_Ei_aiil_ﬂ Business Implications

In addition to the previous output, it is important to also know the bottom-line of the financials. The output not only
gives data for profit/loss but also gives the corresponding revenue and expense for deeper reference

Querying the DBMS Query Objective: To get the top highest

] . selling months.
Business inferences from our database

37 # Maximum and minimum sale month every year

38 ®) select case when a.sale_month = @3 then 'March'

' Top_months Total_Sales

39 when a.sale_month = 04 then 'April'

40 when a.sale_month = @5 then 'May' ; +

41 when a.sale_month = 06 then 'June'

42 when a.sale_month = @7 then 'July’ \ ’ June wo 1 16. 02

43 when a.sale_month = 08 then 'August’

- when a.sale_month = @9 then 'September'’ . JU|Y %5433.92000000004
45 when a.sale_month = 10 then 'October'end as Top_months, a.Total_Sales from

46 (select SUBSTRING(sale_date, 4, 2) as sale_month , sum(credit_card) + sum(deposit) as Total Sales May 33540 7. 00999999995
47 from project.sales

43 group by SUBSTRING(sale_date, 4, 2))a order by 2 desc limit 3;

"_EE"S_? Business Implications

Identifying three highest selling months could help in prioritizing marketing activities and manage inventory efficiently to meet the
demand accordingly

Querying the DBMS Query Objective: give the lowest month

. : and its sales.
Business inferences from our database

50 ®) select case when a.sale_month = @3 then 'March’

[
I
1
[
[
I
51 when a.sale_month = 84 then 'April’ 1
- I .
52 when a.sale_month = @5 then "Mz
o [
;3 when a.sale_sonth = 06 then *June’ | Top_months Total_Sales
54 when a.sale_month = 87 then 'July’ : ‘ .
el » March 114727.64000000001
55 when a.sale_month = 88 then 'August
56 when a.sale_month = @9 then 'September’ :
57 when a.sale_month = 18 then 'October'end as Top_months, a.Total Sales from [
58 (select SUBSTRING(sale_date, 4, 2) as sale_month , sum(credit_card) + sum(deposit) as Total_Sales :
59 from project.sales [
60 group by SUBSTRING(sale_date, 4, 2))a order by 2 limit 1; :
I
1

‘ﬁfg’ Business Implications

By identifying the lowest performing month using this query, the business can further dig deeper into the sales data
and identify patterns to address low sales

63
64
65
66
67

Querying the DBMS

Business inferences from our database

Employee of the month

select a.employee_id , b.EMPLOYEE_FIRSTNAME , b.EMPLOYEE_LASTNAME
from project.sells a join project.employees b on a.employee_id = b.employee_id

order by 1 desc limit 1;

Query Objective: to find the employee of
the month based on the number of product sold
each month

employee_id EMPLOYEE_FIRSTNAME EMPLOYEE_LASTNAME

| P |15 Jordan Samman

‘f_E‘ﬁ_J Business Implications

|dentifying 'Employee of the month' is a key component in employee management. Any incentive tied to
performance could further encourage employees to strive for achieving this goal

Querying the DBMS Query Objective: To find the top 3 most

. . sold products at Frozen Custard
Business inferences from our database

SQL Function m

69 #Top 3 products sold in Frozen Custurd count moduct_'d Uoduct—name Uoduct_type
70 |
71 ® select count(a.product_id) as count, a.product_id , b.product_name, b.product_type . ’ 24 10 Blue Moon CUStard
72 from project.sells a join project.product b on a.product_id = b.product_id .
73 group by a.product_id order by 1 desc limit 3; 24 11 Fn""t BlBSt Cusmrd
24 12 Cinnamon Custard

"_EE‘EZ_] Business Implications

Identifying top 3 selling products would help in managing inventory for flavors, prioritize product promotions and add
bargaining leverage when negotiating with vendors

Query Objective: To find the top products
sold in all categories.

Querying the DBMS

Business inferences from our database

SQL Query

product_id product_name product_type
75 #Top products in all product_type , t
76 P 36 Double Hamburgers Burgers
77 ®) select x.product_id , x.product_name , x.product_type from (20 ChOCOlate Brownie CUStafd
78 select count(a.product_id) as count, a.product_id , b.product_name, b.product_type,
79 rank() over (partition by b.product_type order by a.product_id desc) as product_rank 30 ICY CUDS Drinks
30 from project.sells a join project.product b on a.product_id = b.product_id 43 Corn Dog Hot Dogs
81 group by a.product_id) x where x.product_rank = 1; : 2
43 Coney Cheese Fries Munchies
9 Caramel Pecan Sundae

i%il_l Business Implications

|dentifying top products outside of the frozen custard menu would help in identifying products that complement
well to the frozen custard menu and give inspiration for introducing new products as well

Query Obijective: To find the raw materials
used for most sold products in all categories

Querying the DBMS

Business inferences from our database

SQL Query

|
I
I
I :
I product_name product_type material_name
I .
I p Double Hamburgers Burgers Onions
I
: Double Hamburgers Burgers Cheese
99 #Raw material for the t roducts for different product _ty
b TR T R e preduens Ter GrrTeren preduer e | Double Hamburgers ~ Burgers Burger Buns
| 2
101 ® ¢ select distinct x.product_name , x.product_type , z.material_name from (| Chocolate Brownie Custard Egg Yolks
102 select count(a.product_id) as count, a.product_id , b.product_name, b.product_type, : Chocolate Brownie Custard Cream
103 rank() over (partition by b.product_type order by a.product_id desc) as product_rank | Chocolate Brownie Custard Sugar
104 from project.sells a join project.product b on a.product_id = b.product_id : Chocolate Brownie Custard Milk
105 group by a.product_id) x left outer join project.uses y on x.product_id = y.product_id | :
i - - ups in Paper
106 left outer join project.raw_material z on y.material_id = z.material_id : ICY C Drinks CUD
107 where x.product_rank = 1; | Corn Dog Hot Dogs Hot dog
: Coney Cheese Fries Munchies Cheese
l Caramel Pecan Sundae Eqg Yolks
I
| Caramel Pecan Sundae Cream
I
I Caramel Pecan Sundae Sugar
: Caramel Pecan Sundae Milk

"_E%“EQ Business Implications

This query is crucial for inventory management of other products as these products are not the primary selling
items for the business and mismanagement of inventory could lead to unwanted expenses

Querying the DBMS Query Obijective: To find the highest

. . expenses occured in each year
Business inferences from our database

85 select '2022" as year, EXPENSE_NAME from project.expenses where expense_2022 in (select max(expense_2022) as max_expense from project.expen

| year EXPENSE_NAME

83 # Most expenses occured each year

84

86 union

87 select '2021' as year,EXPENSE_NAME from project.expenses where expense_2021 in (select max(expense_2021) as max_expense from project.expens ’ ‘ 2022 Sal anes &w ages

88 union

89 select '2020" as year,EXPENSE_NAME from project.expenses where expense_2020 in (select max(expense_2020) as max_expense from project.expens mz 1 paYl’O“T axes

90 union

9 select '2019" as year,EXPENSE_NAME from project.expenses where expense 2019 in (select max(expense_2019) as max_expense from project.expens 2020 semnty 'CAMERAS%UARD
92 union

2019 PayrollTaxes

93 select '2018" as year,EXPENSE_NAME from project.expenses where expense_2018 in (select max(expense_2018) as max_expense from project.expens

94 union

95 select '2017" as year,EXPENSE_NAME from project.expenses where expense_2017 in (select max(expense_2017) as max_expense from project.expens | 20 18 payr°|rr axes
Lo 2017 Supplies-Kitchen
97 select '2016" as year,EXPENSE_NAME from project.expenses where expense_2016 in (select max(expense_2016) as max_expense from project.expens

12016 SuppliesKitchen

"_EE‘;S;_] Business Implications

As a seasonal business it is important to have a track of expenses. The output from this query would help in
identifying the area that costs the business the most

Business Findings

Business Recommendations

All business findings

OE: Use the employee data in the database to create efficient work schedules and monitor performance. Implement training and
o= development programs based on employee data to enhance skills and customer service

v = Monitor and analyze expense data to identify areas for cost savings and efficiency improvements. Regularly review

v = operational expenses and vendor contracts to optimize spending

/il Utilize sales data to tailor marketing campaigns and promotions. Implement email marketing, social media engagement, and
u loyalty programs to attract and retain customers
% At later stages, implement a CRM system within the database to integrate and track customer interactions on online and
;‘; offline channels. This will enable personalized marketing campaigns, loyalty programs, and targeted promotions.

o o Provide ongoing training and support to staff members responsible for using the database. Encourage feedback from

gT@ employees and customers regarding the database system's usability and functionality. Continuously improve the system

based on user input

